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Noether’s theorem is applied into a multi-scale mechano-electrophysiological coupling model
of neuron membrane dynamics. The Euler-Lagrange equations in generalized coordinates of
this model are deduced by the nonconservative Hamilton principle. The Noether symmetry
criterion and conserved quantities based on the Lie point transformation group are given. The
influence of external non-potential forces and material parameters on the forms of Noether
conserved quantities is detailed discussed, which indicates that the conserved quantities are
very depending on the loading rate and mechanical parameters of the membrane.
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1. Introduction

Symmetry and first integrals are two fundamental structures of ordinary differential equations
(ODE), which can reduce the order of ODE and even can give solutions to ODE (Bluman and
Anco, 2002). Since Noether revealed the relation between symmetry and conserved quantity,
Noether’s theorem (Noether, 1918) has been extended to many fields. Kosmann-Schwarzbach
and Schwarzbach (2011) gave a comprehensive review of Noether’s theorem, such as theorem for
discrete equations in mathematics (Dorodnitsyn, 2001; Hydon and Mansfield, 2011; Peng, 2017;
Mansfield et al. , 2019; Peng and Hydon, 2022), physics (Wang, 2011, 2012; Wang and Zhu, 2011),
mechanics and engineering (Mei, 1993, 2004; Zhang and Chen, 2018; Zhang, 2022). Noether’s
symmetry always can refer to conserved quantities, it is also called variational symmetry (Peng
and Hydon, 2022). Besides Noether’s symmetry, there are Lie’s symmetry (Olver, 1986; Chen et
al., 2005), Mei symmetry (Mei, 2000; Fang et al., 2007; Wang and Xue, 2016; Luo et al., 2018)
and other symmetries (Wang, 2018).

Recently, a new model of an axon membrane that is a multi-scale memchano-
-electrophysiological coupling model (Drapaca, 2015) has been proposed to understand the prop-
agation of an action potential. Though there are different viewpoints on origin of the action po-
tential, this new model may bridge a simple way to compare micro-mechanical parameters with
experiments directly, which may be helpful in clinic applications. However, differential equations
describe those models as nonlinear and multi-scale, which is not easy to solve out. Symmetry
analysis based on Lie’s group is a powerful tool in reduction of nonlinear differential equations
and getting exact solutions (Olver, 1986). However, to our knowledge, Noether’s symmetry has
not been introduced into this problem.

In this paper, we will applied Noether’s theorem into this model, and give Noether’s sym-
metry criterion and conserved quantities.

The construction of this paper is as following. In Section 2, we will generalize the model in
(Drapaca, 2015) and give a generalized Lagrange equation of the axon dynamics. Because the
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author (Drapaca, 2015) supposes that the capacitor of the membrane is constant, and uses the
classical Hodgkin-Huxley equation to replace the equations of dynamics describing the mechano-
-transduction of ionic channel activation and inactivation, so that the results cannot reflect the
mechanical information of subcellular structure affecting the action potential, in fact returning
into the voltage active ionic channels scenario again. Furthermore, the author supposed no
external forces acting on the system, all the process is triggered by the input electric current. So,
in this part we will modified the model to be able to study a more general case, which considerd
parameters of the subcellular and non-potential forces model and suppose both mechanical
factors or voltage factors that can activate ionic gate control. Then we will deduce the Euler-
-Lagrange equation. In Section 3, Noether’s symmetry and conserved quantities of the neural
dynamics are studied. The criterion of Noether’s symmetry and the expression form of conserved
quantities are given. In Section 4, we will specifically discuss the deduced conserved quantities
on various conditions. The final Section concludes the paper.

2. The Euler-Lagrange equations of neural membrane dynamics

2.1. A review of the model

As we know, the membrane of an axon consists of a phospholipid bilayer with an embedded
channel protein. The propagation of electric signals in the neuron system is by producing ac-
tion potential accompanied with an ion channel open or shut. The action potential can induce
deformation of the neuron membrane, whereas the inverse deformation of the neuron mem-
brane can also induce the action potential, so it is a coupling process. Modelling the axon as

Fig. 1. The schematic of an axon (a) and mechano-electrical coupling of the axon membrane (b). The
axon is an axi-symmetric homogeneous circular cylinder with intracellular space filled with axoplasm
(light blue), and the outer layer is the membrane space between blue and red. By symmetry and

homogeneity of the column, we study half of the axon. In cellular scale, we model the intracellular space
as a viscoelastic material by the Kelvin model connects with the axon capacitor (the dotted box 1○),
where (kx̃1, x̃2, x̃3) is relative to the response of cytoskeleton, where (x̃1, x̃2, x̃3) is relative motion of the
cytoskeleton with different ionic channels, x is displacement of the membrane. Mechanical motion or
electrical stimuli can trigger the circuit. In the subcellular scale, the ionic exchange obeys the classic
Hodgkin-Huxley equations (dotted box 2○), but add mechanotransduction channel action that is

motion of the channel protein (x̃1, x̃2, x̃3)

an axi-symmetric cylinder with intracellular space and outer membrane and supposing the axon
is homogenous, we can use a linear visco-elastic Kelvin-Voigt model to formulate the macro-
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-mechanical process and Hodgkin-Huxley model to describe the electric process. The coupling
process is unified through capacitance and membrane displacement, see Fig. 1.
The axon can be considered as an axisymmetric cylinder with a circular cross section, so

we can study a half axon by symmetry. We can express the macro-mechanical kinetic energy as
T = 0.5Mẋ2, where M denotes half constant mass of the neuron of the constant cross-sectional
area A and x(t) is the macroscopic (cell level) displacement of the membrane depending on time,
because the movement of the membrane affects the axon capacitor, which consequently induces
depolarization electric current of the axon membrane. The macro mechanical potential energy is
V = −0.5kx(t)2. The mechanical dissipation function (work of the viscous force) ψm = 0.5ηẋ

2,
where η is the viscosity coefficient. The micro relative kinetic energy of cytoskeleton structures or
ionic gate control movement is T ∗ = 0.5(m1ẋ

2
1+m2ẋ

2
2+m3ẋ

2
3), where x1(t), x2(t) and x3(t) are

time-dependent micro displacements of the cytoskeleton regulating activations of Na+ and K+

channels and, respectively, the inactivation of Na+ channel, and varying with the deformation of
the neuron membrane or conduction of the action potential, andm1,m2,m3 are constant masses
of mechno-sensitive channel proteins or lipid rafts. Here, the explanation T ∗ and components
therein, is different from electrical kinetic energy in (Drapaca, 2015), but instead as the kinetic
energy of the cytoskeleton from the point of view of mechanotransduction in intracellular. The
electric energy of capacitor isWe = 0.5e

2
c/C(x), where C(x) is capacitance of the membrane. The

electric dissipation function is ψe = 0.5RNaė
2
Na+0.5RK ė

2
K +0.5Rl ė

2
l +ENaėNa+EK ėK +Elėl,

where currents denote the transmembrane current induced by the membrane deformation or
action potential.

2.2. The Lagrange equation of the model

Based on the conservation law of charge, we have holonomic constraint to the charge:
eC − eNa − eK − el = 0, so the number if degrees of freedom of the coupling system is seven.
Introduce generalized coordinates to express universally the spatial and electrical variables qs
(s = 1, . . . , 4, 4 + 1, . . . , 7), where q1 = x, q2 = x1, q3 = x2, q4 = x3 and q5 = eNa, q6 = eK ,
q7 = el. The Lagrangian of the neuronal axon membrane mechano-electrophysiological model is

L(t, qs(t)q̇s(t)) = T + T
∗ − V −We (2.1)

The virtual work of nonconservative generalized forces is

δW (t, qs, q̇s) = −
(∂(ψm + ψe)

∂q̇s
−Qs

)
δqs (2.2)

The Hamilton principle of the nonconservative mechano-electrophysiological system of the axon
membrane is

t∫

0

(δL + δW ) dt = 0 (2.3)

By expanding the above equation, and using the communication relation dδ = δd which holds
for holonomic constrained systems, and end points relations δq(0) = 0, δq(t) = 0, we can get
mechano-electrophysiological coupling Euler-Lagrange equations of the axon membrane dynam-
ics

d

dt

∂L

∂q̇s
−
∂L

∂qs
+
∂ψ

∂q̇s
= Qs s = 1, . . . , 7 (2.4)

where ψ = ψm+ψe. The coupling equations of motion describe the changes of ions between the
outer and intercellular space and micro and macro deformation of the neuron membrane.
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Take the very expression of Lagrangian L, Eq. (2.1), into Eq. (2.4), then we can obtain
Euler-Lagrange differential equations the same as in (Drapaca, 2015)

Mẍ+ kx+ ηẋ−
1

2

∂C

∂x

(qC
C

)2
= Q1 (2.5)

and

m1ẍ1 +
1

2

∂k

∂x1
= Q2 m2ẍ2 +

1

2

∂k

∂x2
= Q3 m3ẍ3 +

1

2

∂k

∂x3
= Q4 (2.6)

and

RNaėNa + ENa = V RK ėK + EK = V Rlėl + El = V (2.7)

where V = Ui = qC/C is potential of the capacitor. Kirchoff’s current law demands
q̇C = q̇Na+ q̇K+ q̇l. Take Eqs. (2.7) into Kirchoff’s current law, the well-known Hodgkin-Huxley
equation of the membrane potential can be found

d

dt
(CV ) = I −

1

RNa
(V − ENa)−

1

RK
(V − EK)−

1

Rl
(V −El) (2.8)

where I is the external stimulus current.

Remark 1. (i) In Ref. (Drapaca, 2015), the author supposed external non-potential forces
Qs = 0, that is the coupling process is triggered all by electric current which is not ac-
cordance with other supposed mechanical signals which can also induce action potential
(Heimburg and Jackson, 2005), so for an alternative in the present paper, we suppose that
both of them can induce the action potential.

(ii) At the some time, Drapaca uses the Hodgkin-Huxley equation to replace equations (2.6)
which makes the parameters of m1, m2, m3, k, ENa, EK , El, R1, R2, R3 all depend on
voltage V , which may reduce the model into Hodgkin’s and Huxley’s electric paradigm.

(iii) Though the parameters m1, m2, m3, k, ENa, EK , El, R1, R2, R3 are difficult to pre-
scribe due to insufficient knowledge of neuronal mechanotransduction processes as Drapaca
said in (Drapaca, 2015), we try to discuss their influences on the conserved quantities of
the axon membrane in theory which may be useful for future experiment design.

In the following study we will treat the general cases by Noether’s symmetry analysis.

3. Noether’s symmetry and conserved quantities of the neuronal membrane

dynamics

We introduce a one-parameter infinitesimal Lie point transformation group in space (t, qs)

t∗ = t+ εξ0(t,q) q∗s = qs + εξs(t,q) s = 1, . . . , 7 (3.1)

where ε is an infinitesimal parameter, ξ0(t,q), ξs(t,q) are infinitesimal transformation genera-
tors. The infinitesimal generator vector

X(0) =
∂

∂t
ξ0(t,q(t)) +

∂

∂qs
ξs(t,q(t)) (3.2)
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which is the operator for the infinitesimal generator of the one-parameter Lie group of transfor-
mations (3.1) in space (t,q). The first prolongation of the infinitesimal generator vector is

X(1) = X(0) +
∂

∂q̇s
[ξ̇s(t,q(t))− ξ̇0(t,q(t))q̇s(t)] (3.3)

The second prolongation of the infinitesimal generator vector is

X(2) = X(1) +
∂

∂q̇s
[ξ̈s(t,q(t))− 2q̈s(t)ξ̇0(t,q(t)) − q̇s(t)ξ̈0(t,q(t))] (3.4)

which defines the first or second extended one-parameter Lie group of transformation in space
(t,q, q̇) or space (t,q, q̇, q̈) by partial derivatives, where ˙(•) means the first derivative to t, ¨(•)
means the second derivative to t.
The Hamilton action is

S(γ) =

t1∫

t0

L(t, qs, q̇s) dt (3.5)

Under the infinitesimal transformation, the curve γ is transformed to curve γ∗. The correspond-
ing Hamilton action is transformed to

S(γ∗) =

t∗
1∫

t∗
0

L(t∗, q∗s , q̇
∗

s) dt
∗ (3.6)

The variation ∆S of the Hamilton action S is the main linear part of the difference S(γ∗−S(γ))
to the infinitesimal parameter ε, then we have

∆S =

t1∫

t0

[∆L+ L(∆t)•] dt (3.7)

where ∆ denotes anisochronous variation, and δ denotes isochronous variation. Expanding the
above equation, we have

∆S =

t1∫

t0

(
L
d

dt
∆t+

∂L

∂t
∆t+

∂L

∂qs
∆qs +

∂L

∂q̇s
∆q̇s
)
dt (3.8)

Replace the infinitesimal transformation Eq. (3.1) into Eq. (3.8), and use the relation δqs =
∆qs − q̇s∆t = ε(ξs − q̇sξ0), ∆q̇s = (∆qs)

• − q̇s(∆t)
•, then the following expression can be

obtained

∆S =

t1∫

t0

{ d
dt

[
Lξ0 +

∂L

∂q̇s
(ξs − q̇sξ0)

]
+
( ∂L
∂qs
−
d

dt

∂L

∂q̇s

)
(ξs − q̇sξ0)

}
dt (3.9)

Definition 1. If the variation of Hamilton action satisfies

∆S = 0 (3.10)

infinitesimal transformation (3.1) is the Noether symmetrical transformation.

Based on Definition 1, we can get the Noether symmetry criterion.



852 P. Wang

Criterion 1. If the infinitesimal generators ξ0, ξs satisfy

Lξ̇0 +X
1(L) = 0 (3.11)

the transformation invariance is named Noether’s symmetry, which is also called variational
symmetry.

For Noether’s symmetry, we can deduce the conserved quantities.

Theorem 1. For a Lagrangian system, if the generators ξ0(t,q), ξs(s,q) of infinitesimal trans-
formations is Noether’s symmetry, there exist conserved quantities as

IN = Lξ0 +
∂L

∂q̇s
(ξs − q̇sξ0) = const (3.12)

which are called Noether conserved quantities. We can directly deduce this result from Eq.
(3.9).

In fact, we can generalize the Noether symmetry to non-conservative dynamical systems.

Definition 2. If the Hamilton action is a generalized quasi-invariant under an infinitesimal
transformation group, that is, the variation satisfies

∆S = −

t1∫

t0

[ d
dt
(∆G) +

(
Qs −

∂ψ

∂q̇s

)
δqs
]
dt (3.13)

infinitesimal transformation (3.1) is a generalized quasi-symmetrical transformation, where
G(t,q, q̇) is a gauge function, and (Qs−∂ψ/∂q̇s)δqs is the sum of virtual work of generalized
non-conservative forces.

Based on Definition 2, we can get the generalized Noether symmetry criterion.

Criterion 2. If there exists a gauge functionG(t,q, q̇) making the infinitesimal generators ξ0, ξs
satisfy

Lξ̇0 +X
1(L) +

(
Qs −

∂ψ

∂q̇s

)
(ξs − q̇sξ0) + ĠN = 0 (3.14)

the infinitesimal transformation is named a quasi-Noether symmetry.

The Noether symmetry always can lead to conserved quantities.

Theorem 2. For Lagrange equation Eq. (2.4) of the neuronal membrane dynamics, if the in-
finitesimal generators ξ0(t,q), ξs(s,q) satisfy Criterion 2, the system has the following first
integrals

IN = Lξ0 +
∂L

∂q̇s
(ξs − q̇sξ0) +GN = const (3.15)

which are also Noether conserved quantities.

Proof: Expanding Definition 2, we have

∆S =

t1∫

t0

{ d
dt

[
Lξ0+

∂L

∂q̇s
(ξs−q̇sξ0)

]
+
( ∂L
∂qs
−
d

dt

∂L

∂q̇s
−Qs+

∂ψ

∂q̇s

)
(ξs−q̇sξ0)

}
dt = 0 (3.16)

considering Eq. (2.4), we can get the results directly.
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4. Noether’s symmetry generators and conserved quantities

Take the exact form of Lagrangian L and dissipative function ψ into Noether identity Eq. (3.14),
then we have

ξ1
(
−kq1 +

V 2

2

∂C(q1)

∂q1

)
+Mq̇1(ξ̇1 − q̇1ξ̇0) + (Q1 − ηq̇1)(ξ1 − q̇1ξ0)− ξ2

1

2
q21
∂k

∂q2

+m2q̇2(ξ̇2 − q̇2ξ̇0) +Q2(ξ2 − q̇2ξ0)− ξ3
1

2
q21
∂k

∂q3
+m3q̇3(ξ̇3 − q̇3ξ̇0)

+Q3(ξ3 − q̇3ξ0)− ξ4
1

2
q21
∂k

∂q4
+m4q̇4(ξ̇4 − q̇4ξ̇0) +Q4(ξ4 − q̇4ξ0)

+ (Q5 −RNaq̇5 − ENa)(ξ5 − q̇5ξ0)− ξ5V + (Q6 −RK q̇6 − EK)(ξ6 − q̇6ξ0)− ξ6V

+ (Q7 −Rlq̇8 − El)(ξ7 − q̇7ξ0)− ξ7V + Lξ̇0 + ĠN = 0

(4.1)

Next, let us discuss the structures of Noether conserved quantities when the external nonpoten-
tial forces Qs 6= 0 (s = 1, 2, 3, 4). If k = const and the total charges of the systems is invariant,
we can get solutions

ξ0 = ±1 ξ1 = ±q̇1 ξ2 = ξ3 = ξ4 = 0 ξi = ±q̇s (s = 5, 6, 7) (4.2)

ξ0 = ±1 ξi = ±q̇s (s = 1, 2, 3, 4) (4.3)

ξi = ±q̇s (s = 5, 6, 7) (4.4)

ξ0 = ξ1 = 0 ξ2 = ξ3 = ξ4 = ±1 ξ5 = ξ6 = ξ7 = 0 (4.5)

ξ0 = ξ1 = 0 ξi = ±q̇s (s = 2, 3, 4) ξ5 = ξ6 = ξ7 = 0 (4.6)

The corresponding Noether conserved quantities are

IN11 = ±
(1
2
m2q̇

2
2 +
1

2
m3q̇

2
3 +
1

2
m4q̇

2
4 −Wq

)
IN12 = 0

IN13 = ±(m2q̇2 +m3q̇3 +m4q̇4 −Qq) IN14 = −IN11

(4.7)

Here, the composition of conserved quantities (4.7) depends on specific non-potential forces.
Wq has several forms

Q2 = q̈2 Q3 = q̈3 Q4 = q̈4 Wq1 =
1

2
(q̇22 + q̇

2
3 + q̇

2
4)

Q2 = q̈3 Q3 = q̈2 Q4 = q̈4 = 0 Wq2 = q̇2q̇3 +
1

2
q̇24 = 0

Q2 = q̈4 Q3 = q̈3 = 0 Q4 = q̈2 Wq3 = q̇2q̇4 +
1

2
q̇23 = 0

Q2 = q̈2 = 0 Q3 = q̈4 Q4 = q̈3 Wq4 = q̇3q̇4 +
1

2
q̇22 = 0

(4.8)

and Qq = q̇2 + q̇3 + q̇4 or a combination of q̇s (s = 2, 3, 4). We point out that for solution
(4.2)-(4.6), always holding ξs− q̇sξ0 = 0, the non-potential forces have no action on the Noether
identities.
If k = const , C = const , we also have solutions (4.2)-(4.6), and the corresponding conserved

quantities are

IN21 = IN11 ∓
e2C
2C

IN22 = −
e2C
2C

IN23 = IN13 IN24 = IN14 (4.9)

We can get that for infinitesimal generators (4.5) and (4.6), the capacitance does not affect the
conserved quantities.



854 P. Wang

If k 6= const , C = const , we have one solution (4.4), and the corresponding conserved
quantities are IN31 = −e

2
C/2C. For k 6= const , C 6= const , we have one solution (4.4) with the

trivial invariant IN = 0.
There is a particular case Q1 = ηq̇1 in which the external non-potential force is synchronized

with viscosity of the axon membrane material. Let us study the conserved quantities for this
case. One solution of Noether’s identity is

ξ0 = ±1 ξ1 = ξ2 = ξ3 = ξ4 = 0 ξs = ±q̇s (s = 5, 6, 7) (4.10)

The corresponding Noether conserved quantities are

IN = ∓
(1
2
Mq̇21 +

1

2
kq21 +

e2C
2C
+
1

2
m2q̇

2
2 +
1

2
m3q̇

2
3 +
1

2
m4q̇

2
4

)
(4.11)

Furthermore, if k = const and the total charge of the system is invariant, we can get solutions
(4.2) and (4,4) and corresponding conserved quantities with IN61 = IN11, IN62 = 0, and other
two solutions

ξ0 = ±1 ξ1 = ∓q̇1 ξs = 0 (s = 2, 3, 4) ξs = ±q̇s (s = 5, 6, 7)

ξ0 = ±1 ξ1 = ∓q̇1 ξs = 0 (s = 2, 3, 4) ξs = ±q̇s (s = 5, 6, 7)
(4.12)

The corresponding Noether conserved quantities are

IN63 = ∓
(
Mq̇21 + kq

2
1 +

e2C
C
+
1

2
m2q̇

2
2 +
1

2
m3q̇

2
3 +
1

2
m4q̇

2
4 −Wq

)

IN64 = ±
(1
2
Mq̇21 +

1

2
kq21 +

e2C
2C

) (4.13)

If k = const , C = const , we also have solutions (4.2)-(4.6) and (4.12), and the corresponding
conserved quantities are IN71 = IN21, IN72 = IN22, IN73 = IN13, IN74 = IN14, and

IN75 = ∓
(
Mq̇21 + kq

2
1 +

e2C
2C
+
1

2
m2q̇

2
2 +
1

2
m3q̇

2
3 +
1

2
m4q̇

2
4 −Wq

)

IN76 = ±
(1
2
Mq̇21 +

1

2
kq21

) (4.14)

and other solutions and conserved quantities, for example,

ξ0 = 1 ξ1 = −q̇1 ξs = q̇s (s = 2, 3, 4, 5, 6, 7)

ξ0 = 1 ξs = −q̇s (s = 1, 2, 3, 4) ξs = q̇s (s = 5, 6, 7)
(4.15)

The corresponding Noether conserved quantities are

IN77 = −Mq̇21 − kq
2
1 −

e2C
2C

IN78 = IN77 −m2q̇
2
2 −m3q̇

2
3 −m4q̇

2
4 + 2Wq

(4.16)

In fact in (4.15), the generators ξs (s = 2, 3, 4) have a few combination types.
If k 6= const , C = const , we have one solution (4.4), and the corresponding conserved

quantities are IN = 0. For k 6= const , C 6= const , we have one solution (4.4) with the trivial in-
variant IN = −e

2
C/2C. For only k = const , we have solutions (4.5) and (4.6) with corresponding

conserved quantities as

IN81 = −
1

2

(
Mq̇21 + kq

2
1 +

e2C
2C
+m2q̇2(q̇2 − 1) +m3q̇3(q̇3 − 1) +m4q̇4(q̇4 − 1)−Wq +Qq

)

(4.17)IN82 = IN14

In this Section, we have discussed the effects of parameters k, C and non-potential forces Qs
on the forms of Noether conserved quantities.
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Remark 2. From the above calculation we can conclude that the Noether symmetry and Noether
conserved quantities are strongly determined by non-potential forces and material param-
eters.

5. Conclusion

Noether’s theorem is applied in a multi-scale mechano-electrophysiological model of an axon
membrane. Euler-Lagrange equations of the mechano-electrophysiological model of the neuron
membrane are given through which one can deduce the classical H-H equation. Noether’s sym-
metry criterion and Noether’s conserved quantities are given under the Lie point transformations
group. Through Noether criterion, we work out some solutions and give out the corresponding
Noether’s conserved quantities under different external stimuli. During calculation, we discov-
ered that the Noether symmetry and Noether conserved quantities are strongly determined by
non-potential forces and material parameters, which may be useful for an experiment design. As
solving Noether’s identities, we suppose that some material parameters are constants such as
k, η, However the value of material parameters are difficult to determine, and they may be found
by further stability analysis. As the axon membrane is an anisotropic diphasic soft material, the
fractional derivative model (Drapaca, 2017) may be more suitable to describe its behavior, and
we will analyze its Noether’s symmetry in another paper.
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